首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18016篇
  免费   1569篇
  国内免费   1515篇
  2023年   391篇
  2022年   346篇
  2021年   610篇
  2020年   648篇
  2019年   765篇
  2018年   712篇
  2017年   567篇
  2016年   600篇
  2015年   753篇
  2014年   1018篇
  2013年   1369篇
  2012年   773篇
  2011年   956篇
  2010年   706篇
  2009年   885篇
  2008年   869篇
  2007年   874篇
  2006年   779篇
  2005年   748篇
  2004年   611篇
  2003年   518篇
  2002年   453篇
  2001年   398篇
  2000年   418篇
  1999年   361篇
  1998年   334篇
  1997年   283篇
  1996年   258篇
  1995年   278篇
  1994年   228篇
  1993年   254篇
  1992年   213篇
  1991年   211篇
  1990年   196篇
  1989年   152篇
  1988年   162篇
  1987年   134篇
  1986年   135篇
  1985年   176篇
  1984年   177篇
  1983年   118篇
  1982年   146篇
  1981年   102篇
  1980年   82篇
  1979年   61篇
  1978年   51篇
  1977年   46篇
  1975年   32篇
  1974年   34篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The effects of near ultraviolet (NUV) light on a NUV chromophore-containing oxidant-sensitive enzyme, dihydroxyacid dehydratase (DHAD), were measured in seven strains of Escherichia coli. The strains differed in production of the oxidant-defense enzymes, superoxide dismutases (Fe-SOD and Mn-SOD), and catalases HPI and HPII. With the stress of aerobic growth but without NUV exposure, the strains lacking either Fe or Mn SOD or both SODs had 57%, 25%, and 12%, respectively, of the DHAD-specific activity of the parent (K12) strain. Under the same conditions, the catalase strains that were wild type, overproducing, and deficient had comparable DHAD-specific activities. When aerobic cultures were exposed for 30 min to NUV with a fluence of 216 J/m2/s at 310–400 nm, the percentage decreases in DHAD-specific activities were similar (ranging from 75% to 89%) in strains with none, either, or both SODs missing, and in the catalase-overproducing strain. However, the decreases were only 58% and 52% in the strain with catalase missing and in its parent, respectively. The NUV-induced loss of DHAD enzyme activity was not accompanied by any detectable loss of the DHAD protein as measured by polyclonal antibody to DHAD.  相似文献   
3.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   
4.
Abstract Schizosaccharomyces pombe becomes resistant to killing by high concentration of hydrogen peroxide and other severe stresses including oxidants, high temperature and high concentration of ethanol when pretreated with nonlethal levels of hydrogen peroxide. In the presence of the protein synthesis inhibitor, cycloheximide, during hydrogen peroxide pretreatment, the cell obtained partial resistance to a higher level of hydrogen peroxide. The partial resistance to hydrogen peroxide in the presence of cycloheximide was acquired within 30 min of pretreatment but complete resistance obtained with de novo protein synthesis was not attained before 45 min of pretreatment. During adaptation to hydrogen peroxide, at least 15 polypeptides are induced, as analyzed by two-dimensional gel electrophoresis. Catalase activity is induced eight-fold by treatment with a nonlethal level of hydrogen peroxide.  相似文献   
5.
Invasion of alien plant species (IAS) represents a serious environmental problem, particularly in Europe, where it mainly pertains to urban areas. Seed germination traits contribute to clarification of invasion dynamics. The objective of this research was to analyze how different light conditions (i.e., 12-hr light/12-hr darkness and continuous darkness) and temperature regimes (i.e., 15/6°C, 20/10°C and 30/20°C) trigger seed germination of Ailanthus altissima (AA), Phytolacca americana (PA) and Robinia pseudoacacia (RP). The relationship between seed germination and seed morphometric traits was also analyzed. Our findings highlight that temperature rather than light was the main environmental factor affecting germination. RP germinated at all tested temperatures, whereas at 15/6°C seeds of AA and PA showed physiological dormancy. RP had a higher germination capacity at a lower temperature, unlike AA and PA, which performed better at the highest temperatures. Light had a minor role in seed germination of the three species. Light promoted germination only for seeds of PA, and final germination percentage was 1.5-fold higher in light than in continuous darkness. Seed morphometric traits (thickness [T], area [A] and volume [V]) had a significant role in explaining germination trait variations. The results highlight the importance of increasing our knowledge on seed germination requirements to predict future invasiveness trends. The increase in global temperature could further advantage AA and PA in terms of germinated seeds, as well as RP by enhancing the germination velocity, therefore compensating for a lower germination percentage of this species at the highest temperatures.  相似文献   
6.
7.
8.
Field-measured grazing rates (ml/animal/d) of cladocerans (mostly daphniids) and diaptomids were assembled from various published studies and plotted as a function of corresponding phytoplankton concentration (μg l−1 f.w.). Filtering rates of both zooplankton groups initially increased with seston concentration until maximal grazing rates were observed at approximately 4 × 102 and 1 × 102 μg l−1 for cladocerans and copepods, respectively; at higher algal concentrations, filtering rates of both declined as a function of food concentration. The shape of these curves are most consistent with Holling's (1966) Type 3 functional response. We found little support for the Type 3 functional response in published laboratory studies of Daphnia; most investigators report either a Type 1 or Type 2 response. The one study in which the Type 3 response was observed involved experiments where animals were acclimated at low food concentrations for 24 h, whereas those studies associated with response Types 1 or 2 had acclimation periods of only 1 to 3 h. We therefore assembled relevant data from the literature to examine the effect of acclimation period on the feeding rates of Daphnia at low food concentrations. In the absence of any acclimation, animals filtered at extremely low rates. After 2 h of acclimation, however, filtering rates increased 4 to 5-fold but declined again with longer durations; after > 70 h of pre-conditioning, filtering rates were almost as low as they had been with no acclimation. We also found little support for the Type 3 functional response in published studies of copepods. The only study associated with a Type 3 response involved a marine copepod that had been subjected to a starvation period of 48 h; however, an analysis of the effects of acclimation period did not yield conclusive evidence that filtering rates of freshwater copepods (Diaptomus and Eudiaptomus) decrease significantly with acclimation duration. The low filtering rates associated with long acclimation periods in laboratory experiments appears to be a direct result of animals becoming emaciated from prolonged exposure to low food concentrations, a situation which renders them incapable of high filtering rates. This may explain the Type 3 functional response for field cladocerans, since zooplankton in food-limiting situations are constantly exposed to low food concentrations, and would therefore have low body carbon and consequently less energy to filter-feed. We cannot, however, use this to explain the Type 3 response for field diaptomids, since copepods in the laboratory did not appear to lose body carbon even after 72 h of feeding at very low food levels, and there was inconclusive evidence that either Diaptomus or Eudiaptomus decrease their filtering rates with acclimation period. Although Incipient Limiting Concentrations (ILC) for Daphnia ranged from 1 to 8.5 × 103 μg 1−1, more than half of these fell between 1 and 3 × 103 μg l−1, bracketing the value of 2.7 × 102 μg l−1 for field cladocerans. There was, however, a great deal of variation in reported maximum ingestion rates (MIR), maximum filtering rates (MFR) and ILC values for Daphnia magna. ILC values from the few laboratory studies of freshwater copepods ranged between 0.5 to 2.8 × 103 μg 1−1, and was higher than the ILC value of approximately 0.2 × 103 μg l−1 calculated for field populations of D. minutus. Generally, there was considerable agreement among laboratory studies regarding the shape of grazing-rate and ingestion-rate curves when data were converted to similar units and presented on standardized scales.  相似文献   
9.
10.
Programed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. This adaptive plant immune response was quantitatively assessed against Tomato Mosaic Virus infection by the following physiological markers; Chlorophyll-a (mg/g), Chlorophyll-b (mg/g), total protein (mg/g), hydrogen peroxide H2O2 (μmol/100 mg), DNA (μg/100 mg), RNA (μg/100 mg), Salicylic acid (μg/g), and Comet Assays. Parameters were assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (⩽1.095 μmol/100 mg) and (⩽3.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = −0.930, P < 0.01) where the P value was <0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号